SM AENERGY

550 N. 31st Street, Ste. 500 P.O. Box 7168 Billings, MT 59101

May 20, 2014

NSR Program Manager/Attn: O&G Production Facilities Wyoming Dept. of Environmental Quality Air Quality Division Herschler Bldg., 2-E 122 West 25th St Cheyenne, WY 82002

Re: Permit Applications for Roger Leo Fed 3875-20-29-1FH and Spearhead Fed 14-7H

Dear Permitting Engineer:

SM Energy Company respectfully submits the following permit applications for the Roger Leo Fed and the Spearhead Fed. Both of the permit applications were submitted electronically and this envelope includes the additional paper copy with original signature.

Please contact us with any questions or concerns.

Respectfully,

Luke Studer

SM Energy Company

Reviewer HmB cc:

D.E. _____

Spearhead

		30.51	MAY 2015	-0
Department of	of Environmental (Quality Air	Quality Divis	ior
P	ermit Application	Form	AIR QUALITY DIVISION	
this a revision to an ex	isting application?	150	'o. 0	0
Yes	No X		E 21 1 batte of A	ppli
		1		

DIVISION		
Date of Application:	5/1/2015	

WYOMING	V	N V	8 21115 13	
	Yes	No X	El II batte GEAppli	cation: 5/1/2015
	Previous Application #:			
COMPANY INFO	RMATION:		•	
Company Name:		SM Energ	y Co.	
Address:	55	0 North 31st Street Suite 5	500	
City: Billi	ngs State	e: Montana	Zip	Code: 59103
Country:	USA	Phone Number:	4068698706	
FACILITY INFORM	/ATION:			
Facility Name:		Spearhead Fed	eral 14-7H	
New Facility or Existin	ng Facility: New	İ		
Facility Description:		Oil and Gas Produ	action Facility	
Facility Class:	Minor	Operating Status:	Operating	
Facility Type:	Production Sit	te		
For Oil & Gas Product				
	on (FDOP)/Date of Modifi	cation: March 2015		
	nis facility contain H2S?*	No		
*If yes, contact the D	ivision.			
API Number(s):		49-0	09-29019	
NAICS Code:		211111 Court Detur		
	ON	ZIIIII Crude Petroleur	n and Natural Gas Extraction	
FACILITY LOCATI				
	on in either the latitude/longit	tude area or section/township	/range area. Both are not require	ed.
Physical Address:		7:- 01-		
City: State: WY		Zip Code:		
	County	y: [
<u>OR</u>				
Latitude: 43.36		e:105.789419		County: Converse
Quarter Quarter:	SE	Quarter:	SW	
Section: 7	10 11 11			Range: 74W
		/WGS84 datum and 5 digi	ts after the decimal (i.e. 41.12	2345, -107.56789)
CONTACT INFOR	MATION:			
*Note that an Environmental	AND NSR Permitting Contact is req	uired for your application to be dee	emed complete by the agency.	
Title: Mr.	First Name	2:	Luke	
Last Name:	Studer			
Company Name:		SM Energ		
Job Title:	Re	gulatory & Safety Complia		
Address:		550 North 31st Street S		
City:	Billings	State:	Montana	
Zip Code: 59103				
Primary Phone No.:	406-869-8706	E-mail:		nergy.com
Mobile Phone No.:		Fax No.:		
Contact Type:	Environmental contact	Start Date:		

Additional Contact Ty	pe (if needed): NSR Permi	tting contact	1	
Title: Ms.	First Name:		Lynn	
Last Name:	Olson		-	
Company Name:		Trihydro	о Со	
Job Title:		Air Scientist		
Address:	28	769 Edward View	Drive	
City:	Highland State:		California	
Zip Code: 92346		·		
Primary Phone No.:	(307) 633-9506	E-mail:	lolson@trihydro.com	
Mobile Phone No.:		Fax No.:	2	
Contact Type:	NSR Permitting contact	Start Date:		
FACILITY APPLICA	ATION INFORMATION:			
General Info:				
	ed location or is it a new/ greenfiel	d facility?		Yes
	ng document been included in this			No
	in a sage grouse core area?*	аррисаціон:		No
	ge grouse core area, what is the W	FR number?		140
	sage grouse core area, contact W		nartment	
	plicability - Facility Level:	r dunic a rish be	partment.	
	ant Deterioration (PSD):			No
Non-Attainment New				No
				No
Modeling Section		120		
	vision been contacted to determine	e if modeling is re	quired?	No
Is a modeling analysis	part of this application?			No
Has the Air Quality Div Has a modeling proto	ments: applicable) cument ription	ore-application me ed by the Air Quali	eeting? ity Division?	No No No No
l,	Luke Studer		Sr. EHS S	Specialist
	Responsible Official (Printed Na	ime)	Ti	tle
are true and correct to	ative of the Company, state that I h o the best of my knowledge and be	elief. I further cert	tify that the operational	information provided
	ted on this application reflect the a compliance with all applicable Wy			
Signature:	11		Dati	e: 5-19-15

(ink)

Company Name	SM Energy	
Facility Name	Spearhead Federal 14-7H	

Process Description

The Spearhead Federal 14-7H well has a plunger lift. A rotaflex pump and a generator (previously permitted: P0005290) run the pumping unit and facility.

The fluid stream containing natural gas, crude oil and produced water is routed to the vertical treater. The treater has a 0.75 MMBtu/hr heater. Three streams are generated in the treater including gas, oil, and water.

The crude oil stream is sent to one of the six oil tanks. The tank vapor emissions are captured and sent to the low pressure tip of the Steffes flare (on-site). The combustion efficiency is estimated at 98 percent. The crude oil is hauled offsite by tank trucks.

The gas phase stream leaves the separator and is sent offsite to a pipeline owned by a third party. The stream is also used to fuel the vertical treaters burner if additional fuel is needed. If the gas cannot be sent to the sales line, it will be sent to the high pressure tip of the Steffes flare (considered an emergency situation).

The water is sent to two 400-barrel aboveground storage tanks and sent off site by truck. Since little water is produced and the water is from a treated stream, emissions are assumed to be minimal.

Fugitive emissions are associated with the valves, gauges, tank vents, hatches and connectors at the site. The components were estimated based on similar facilities. An exact component count was not performed.

STATE OF WYOMING

Department of Environmental Quality - Air Quality Division Oil and Gas Production Facilities C6 S2 Permit Application

Equipment List

Company Name	SM Energy
Facility Name	Spearhead Federal 14-7H
produced water storage tanks, al control equipment and devices. atmosphere during times other the gun barrels, scrubber pots, etc). Provide size of production & water	he site including all pressurized vessels with the potential for flash emissions, all hydrocarbon liquids and all dehydration units, all pneumatic pumps, all natural gas-fired burners and heaters and all emission. Pressurized vessels with the potential for flash emissions are all vessels that vent vapors to the nan upset or emergency conditions (water knockouts, 2-phase and 3-phase separators, heater treaters, Provide design ratings for dehys (MMCFD), process heaters, burners and pilots (MMBtu/hr, SCFH). For storage tanks (BPD). For dehydration units indicate if the unit includes a glycol flash separator and/or emission control combustors/flares indicate design rating (MMBtu/hr, SCFD) and combustor/flare height of the gas usage (SCFH).
2 400-bbl water tank	
6 400-bbl oil tanks (controlle	ed by combustor)
1 6' x 20' vertical treater with	1
1 rotatiex pump with associ	ated generator (already permitted: P0005290)
produced gas cannot go to	with a low pressure tip for tank vapors and higher pressure for emergencies when
produced gas carried go to	Saics IIIIC
FORM AQD-OG2 Equipmen	t List AUGUST 2007

Heater/Chiller

Company Equipment ID:	Spearhead	Federal Heater Treate	er heater		
Company Equipment Descri	ption:	Heater Treater heate	r		
	erating				
Initial Construction Commer		Oct 201	4 - Feb 2015	5	
Initial Operation Commence		N	lar-15		
Most Recent Construction/	Modification				
Commencement Date:			NA		
Most Recent Operation Com	nmencement Date:		NA		
Select reason(s) for this em	issions unit being i	ncluded in this applic	ation (must	t be completed re	egardless of date
of installation or modificati			_		
Reason: Cor	struction (Greenfie	ld/New Facility)			
If reason is Reconstruction	or Temporary Perm	it or Other , please e	xplain belov	w:	
	Direct		2021 121		
Heat Input Rating: 0.75			Units:	MMBtu/hr	
, , , , , , , , , , , , , , , , , , , ,	d Gas				
Secondary Fuel Type:					
Heat Content of Fuel: 137	['] 9			Units: BT	U/scf
Fuel Sulfur Content: 0			Units:	ppm	
SCC Codes: List all Source Cl	assification Code(s)	(SCC) that describe the	ne process(es) performed by	the emission
source (e.g., 1-02-002-04).					
		2310010100			
Make the large spices and the second	2000 10000 10000				
Potential Operating Schedu	ule: Provide the	operating schedule f	or this emis	ssion unit.	
Hours/day:	24		_		
Hours/year:	8760		_		

Control Equipment: No	
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.	
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?	
Yes No X	
Pollutant:	
Proposed BACT:	
*If yes, attach BACT Analysis with this application.	
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?	
Yes No X	
Pollutant:	
Proposed LAER:	
*If yes, attach LAER Analysis with this application.	
Federal and State Rule Applicability:	
New Source Performance Standards (NSPS): Not Affected	
New Source Performance Standard are listed under 40 CFR 60-	
Standards of Performance for New Stationary Sources.	
NSPS Subpart:	
N. C. L. C. L. L. C. L. L. C. L. L. C. L. L. C.	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected	
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFF	2
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).	
Part 61 NESHAP Subpart:	
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected	\neg
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)	
standards are listed under 40 CFR 63	
Part 63 NESHAP Subpart:	
Prevention of Significant Deterioration (PSD): Not Affected	
These rules are found under WAQSR Chapter 6, Section 4.	
The state of the s	
Non-Attainment New Source Review: Not Affected	
These rules are found under WAQSR Chapter 6, Section 13.	

Emissions Information- The following tables request information needed to determine the applicable

requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards

				ency Standards			
		Pre-Controlled	Potential		Potential	Potential	T
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Criteria Po	llutants:						
1.)							
	Particulate emissions						
	(PE/PM) (formerly						
	particulate matter,						
	PM)						
2.)							
	PM #10 microns in						
	diameter (PE/PM10)						
3.)							
,	PM #2.5 microns in						
	diameter (PE/PM2.5)						
4.)	Sulfur dioxide (SO2)						
	Nitrogen Oxides						
	(NOx)		0.10	lb/MMBtu	0.07	0.32	AP-42
6.)	Carbon monoxide			,		0.02	711 12
	(CO)		0.08	lb/MMBtu	0.06	0.27	AP-42
7.)	Volatile organic			100 1 100 100 100 100 100 100 100 100 100 1			7.0
,	compounds (VOC)		0.01	lb/MMBtu	0.00	0.02	AP-42
8.)	Lead (Pb)						7
9.)	Total Hazardous Air		See				
	Pollutants (HAPs)		attached		0.00	0.01	AP-42
10.)	Fluoride (F)						
	Hydrogen Sulfide						
	(H2S)						
12.)	Mercury (Hg)						
	Total Reduced Sulfur						
	(TRS)						
14.)	Sulfuric Acid Mist						
,	(SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants

Efficiency Standards

	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.) See Attached						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						
	,	Greenhouse	Gases (GHGs)			
		Greenhouse	Gases (GHGs)			
			Gases (GHGs) ciency Standards	1		
I	Pre-Controlled	Effic Potential		Potential	Potential	
I	Pre-Controlled Potential Emissions	Effic Potential to Emit		to Emit	Potential to Emit	Basis for
	Pre-Controlled	Effic Potential				Basis for Determination
Pollutants:	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.) 2.) 3.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.) 2.) 3.) 4.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.) 2.) 3.) 4.) 5.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.) 2.) 3.) 4.) 5.) 6.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	
1.) 2.) 3.) 4.) 5.)	Pre-Controlled Potential Emissions	Effic Potential to Emit	ciency Standards	to Emit	to Emit	

Separator/Treater

Company Equipment ID: Sprea	arhead Fed Heater Treater
Company Equipment Description:	Heater Treater
Operating Status: Operating	
Initial Construction Commencement Da	te: Oct 2014 - Feb 2015
Initial Operation Commencement Date:	Mar-15
Most Recent Construction/ Modification	1
Commencement Date:	NA
Most Recent Operation Commencemen	t Date: NA
Select reason(s) for this emissions unit	being included in this application (must be completed regardless of date
of installation or modification):	
Reason: Construction (Gr	eenfield/New Facility)
If reason is <i>Reconstruction</i> or <i>Tempora</i>	ry Permit or Other, please explain below:
Type of Vessel: Heater-Trea	ter Is Vessel Heated? Yes
Operating Temperature (F): 80-14	45
Operating Pressure (psig): 25-75	
SCC Codes: List all Source Classification	Code(s) (SCC) that describe the process(es) performed by the emission
source (e.g., 1-02-002-04).	, , , , , , , , , , , , , , , , , , , ,
(10)	
	31000129
Potential Operating Schedule: Provi	de the operating schedule for this emission unit.
Hours/day: 24	as the operating somewhite for this emission unit.
Hours/year: 8760	
6700	

Control Equipment: Yes
If yes, please fill out and attach the appropriate Control Device and Release Point Information worksheets.
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?
Yes No X
Pollutant:
Proposed BACT: Presumptive BACT- Smokeless Combustor 98% control, but all gas is typically sold
*If yes, attach BACT Analysis with this application.
Lowest Achievable Emission Rate (LAER): Was a LAER Analysis completed for this emission unit?
Yes No X
Pollutant:
Proposed LAER:
*If yes, attach LAER Analysis with this application.
Federal and State Rule Applicability:
New Source Performance Standards (NSPS): Not Affected
New Source Performance Standard are listed under 40 CFR 60-
Standards of Performance for New Stationary Sources.
NSPS Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): Not Affected
National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR
61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).
Part 61 NESHAP Subpart:
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63): Not Affected
National Emission Standards for Hazardous Air Pollutants (NESHAP Part 63)
standards are listed under 40 CFR 63
Part 63 NESHAP Subpart:
Prevention of Significant Deterioration (PSD): Not Affected
These rules are found under WAQSR Chapter 6, Section 4.
Non-Attainment New Source Review: Not Affected
These rules are found under WAQSR Chapter 6, Section 13.

Storage Tank/Silo

Company Equipment ID:	Spearhead Fe	ed Crude Oil	Tanks 1-6			
Company Equipment Description:		Crude Tanks	s 1-6			
Operating Status: Operating						
Initial Construction Commencemen	t Date:		Oct 2014	- Feb 2015		_
Initial Operation Commencement D			Ma	ar-15		
Most Recent Construction/ Modific	ation					
Commencement Date:		***************************************		NA		_
Most Recent Operation Commence	ment Date:		Ì	NA		
Select reason(s) for this emissions	unit being in	cluded in th	is applica	tion (must k	e complet	— ed regardless of date of
installation or modification):				*************************************	SECON	•
Reason: Construction	n (Greenfield	/New Facilit	у)			
If reason is <i>Reconstruction</i> or <i>Tem</i>	porary Perm	it or Other,	please ex	plain below:		
Material Type: Liquid Description of Material Stored:		Crude Oil fr	om Oil we	ll productio	n	
Capacity: 400			Units:	barrels	Τ	
	235				Units:	barrels/day
Maximum Hourly Throughput:	19.6			_	Units:	
Operating Pressure (psig):	Atmosphere			_		
Vapor Pressure of Material Stored	(psig):	RVP 8			_	
Is Tank Heated?: No					_	
SCC Codes: List all Source Classifica source (e.g., 1-02-002-04).	tion Code(s)	(SCC) that d	escribe the	e process(es) performe	d by the emission
		231001	0200			
Hours/day:	Provide the c	perating sch	nedule for	this emissio	n unit.	
Hours/year:	8760			_		

Control Equ If yes, pleas	-	Yes and attach the app	oropriate Co	ontrol Dev	ice and Releas	se Point Informat	ion worksheets.	
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?								
	Yes		No		, , , ,			
Proposed BACT: Presumptive BACT- Smokeless Combustor 98% control								
*If yes, atta	ch BACT A	nalysis with this a	pplication.					
Lowest Ach	ievable En	nission Rate (LAE	R): Was a LA	AER Analy	sis completed	for this emission ι	unit?	
	Yes		No		·			
Pollutant:								
Proposed L	AER:	-						
*If yes, atta	ch LAER Ar	nalysis with this a	oplication.					
New Source	Federal and State Rule Applicability: New Source Performance Standards (NSPS): New Source Performance Standard are listed under 40 CFR 60- Standards of Performance for New Stationary Sources. NSPS Subpart: National Emission Standards for Hazardous Air Pollutants (NESHAP Part 61): National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride).							
		SHAP Subpart:	-					
		ndards for Hazard		0.50	1.5		Not Affected	
	standards	mission Standard are listed under 4 SHAP Subpart:		dous Air Po	ollutants (NES)	HAP Part 63)		
		nt Deterioration of are found under			lot Affected Section 4.			
		Source Review: s are found under		t Affected				

Storage Tank/Silo

Company Equipment ID:	prearhead F	ed Produced	Water Ta	inks		
Company Equipment Description:		Produced W	ater 1, Pr	oduced Wat	er 2	
Operating Status: Operating					-75-32	
Initial Construction Commencement				- Feb 2015		_
Initial Operation Commencement Da	8		Ma	ar-15		_
Most Recent Construction/ Modifica	ation					
Commencement Date:	9	-		_		
Most Recent Operation Commencer	ment Date:		ı	NA		
Select reason(s) for this emissions u	unit being in	cluded in th	is applica	tion (must b	e complete	– ed regardless of date of
installation or modification):	J			())		our egar areas or date or
Reason: Construction	(Greenfield	/New Facility	·)	7		
If reason is Reconstruction or Temp	oorary Permi	it or Other,	please ex _l	olain below:		
Material Type: Liquid Description of Material Stored:		Produced wa	ater from	oil well prod	duction	
Capacity: 400		l	Jnits:	barrels		
0 1	45				Units:	barrels/day
Maximum Hourly Throughput: 13	2			-	Units:	
	tmosphere			_		
Vapor Pressure of Material Stored (p	osig):	1 (water)				
Is Tank Heated?: No						
SCC Codes: List all Source Classifications source (e.g., 1-02-002-04).	ion Code(s)	(SCC) that de	scribe the	e process(es) performed	d by the emission
		2310010	200			
Hours/day: 2		perating sch	edule for	this emissio –	n unit.	
110u15/ year. 8	700			_		

Control Eq	uipment:	/es				
If yes, plea	se fill out an	d attach the appro	priate Control D	evice and Release Po	oint Informati	on worksheets.
Best Availa	able Control	Technology (BACT)	: Was a BACT A	nalysis completed for	this emission	unit?
	Yes		No	✓		
Pollutant:	S-					
Proposed I	BACT:					
*If yes, att	ach BACT Ana	alysis with this appl	ication.			
Lowest Ac		ssion Rate (LAER):		lysis completed for t	his emission u	nit?
	Yes		No	\checkmark		
Pollutant:						
Proposed I						
*If yes, att	ach LAER Ana	lysis with this appl	ication.			
		Applicability:			_	
New Source		ce Standards (NSPS	***	Not Affected		
		Performance Stand				
	-	f Performance for I	New Stationary S	ources.		
	NSPS Subpar	rt:				
National F	mission Stand	lards for Hazardous	s Air Pollutants (VIESHAD Dart 611.		Not Affected
ivational L				and the second s		
						listed under 40 CFR
		HAP Subpart:	enzene, berylliur	n, mercury, and vinyl	cnioriae).	
	rait of MESI	TAP Subpart.	•			
National E	mission Stand	lards for Hazardou	s Air Pollutants (NESHAP Part 63):		Not Affected
	National Em	ission Standards fo	or Hazardous Air	Pollutants (NESHAP	Part 63)	
		re listed under 40 C		and the second s		
	Part 63 NESI	HAP Subpart:				
Prevention	of Significan	t Deterioration (PS	D):	Not Affected]
	These rules	are found under W	'AQSR Chapter (S, Section 4.		-
Non-Attair		ource Review:	Not Affect			
	These rules	are found under W	'AQSR Chapter (S, Section 13.	334	

Control Equipment:

Flare/Combustor

Manufacturer:	Steffes		Date Installed:			Oct 2014 - Feb 2015			
Model Name and			Company Control						
Number:	Dual Tip (low and high	pressure)		Equipment I	D:				
Company Control Equ	100000000000000000000000000000000000000		- 2 2		Spearhea	ad Fed Flare			
Description:	Spearhead I	Federal tank	vapor and	emergency g	as flare				
Pollutant(s) Controlled		NOx	Pb	SO2	✓ VOC	PM			
PM (FIL)	PM Condensable	PM 10	(FIL)	PM 2.5	(FIL)	PM 10	PM 2.5		
Other HAPs	✓								
				_					
NOTE: The following	fields require numeric v	alues unless	otherwise	denoted wit	h an asteris	k*			
Maximum Design Cap		High pressur	re tip 1.1, l	ow 0.006 MN	1scf/hr	_			
Minimum Design Capa	acity (MMSCF/hr):	High pressur	re tip 0.001	11, low 4.4 sc	f/hr				
Design Control Efficier	ncy (%): 98	Capture Efficiency (%):							
Operating Control Effi	ciency (%):	98							
Flare Type:*	Elevated- Open		Elevated F	- lare Type:*	Non-A	ssisted	1		
Ignition Device:*	Yes	Fl	ame Prese	nce Sensor:*	Yes		_		
Inlet Gas Temp (F):	ambient at 90F	3		Flame Prese	nce Type:*	C	ther		
Gas ow Rate (acfm):	17-	ries		Outlet Gas T	emp (F):	900			
This is the	only control equipment	on this air co	ntaminant	source					
If not, this control equ	ipment is:	Prim	ary 🗸	Secor	ndary] Pa	rallel 🗌		
List all other emission	units that are also								
vented to this control	This Flar	e contols t	ank vapors. a	nd in emers	encv situat	ions when			
List all release point II	Os associated with this	This Flare contols tank vapors, and in emergency situations when associated gas can not be sold (or consumed by the treater heater).							
·			ks & Heater Treater (in emergencies)						

(SAM)

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards Pre-Controlled Potential Potential Potential Emissions to Emit to Emit to Emit Basis for (PTE) (tons/yr) (lbs/hr) Determination (tons/yr) Units Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides 0.14 lb/MMBtu 0.29 1.258936 AP-42 (NOx) 6.) Carbon monoxide 0.37 lb/MMBtu 0.76 3.327189 AP-42 (CO) 7.) Volatile organic 372.18 1.70 7.44352 Tanks Program compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air 7.72 0.04 0.1544 Tanks Program Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants

			Effic	Efficiency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:							
1.)	See Attached						
2.)							
3.)							
4.)							
5.)							
6.)				*			
7.)							
8.)							

Greenhouse Gases (GHGs)

		Effic	ciency Standards	7		
	Pre-Controlled	Potential	Startagras	Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:						
1.)						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						

Fugitives

Company Equipment ID:	Spearhead F	ed Fugs
Company Equipment Description	:	Fugitive Emissions
Operating Status: Operating		
Initial Construction Commencem	ent Date:	Oct 2014 - Feb 2015
Initial Operation Commencemen	t Date:	Mar-15
Most Recent Construction/ Modi	fication	
Commencement Date:		NA
Most Recent Operation Commen	cement Date:	NA
Select reason(s) for this emission	ns unit being i	ncluded in this application (must be completed regardless of date of
installation or modification):		
Reason: Construct	ion (Greenfield	d/New Facility)
If reason is <i>Reconstruction</i> or <i>Te</i>	mporary Perm	nit or Other, please explain below:
	,	are an empty produce explain below.
Type of Fugitive Emission:	Fugitive Leal	ks at O&G
7,700 01 7 00.81010 211110010111	r agreeve zear	
SCC Codes: List all Source Classifi	cation Code(s)	(SCC) that describe the process(es) performed by the emission source
(e.g., 1-02-002-04).	cation code(s)	(See) that describe the process(es) performed by the emission source
		31088811
Potential Operating Schedule:	Provide the	operating schedule for this emission unit.
Hours/day:	24	O - Street of the strictly willy
Hours/year:	8760	
riours, yeur.	0700	

Control Ed			e Control Device	and Release Point Informati	on worksheets.			
Best Available Control Technology (BACT): Was a BACT Analysis completed for this emission unit?								
	Yes		No	7				
Pollutant:				Lund				
Proposed	BACT:							
*If yes, att	ach BACT Analy	sis with this application	on.					
•								
Lowest Ac		ion Rate (LAER): Was		completed for this emission u	ınit?			
5 11	Yes		No	✓				
Pollutant:	AFR							
Proposed								
"If yes, att	ach LAER Analys	sis with this applicatio	n.					
	New Source Pe	Standards (NSPS): erformance Standard of Performance for New S	are listed under 4					
National E	mission Standar	ds for Hazardous Air I	Pollutants (NESHA	AP Part 61):	Not Affected			
	National Emissions Standards for Hazardous Air Pollutants (NESHAP Part 61) are listed under 40 CFR 61. (These include asbestos, benzene, beryllium, mercury, and vinyl chloride). Part 61 NESHAP Subpart:							
National E	mission Standar	ds for Hazardous Air F	ollutants (NESH	AP Part 63):	Not Affected			
		listed under 40 CFR 6		ants (NESHAP Part 63)				
Prevention	100 m	Deterioration (PSD): e found under WAQSI		Affected tion 4.				
Non-Attair	nment New Sou These rules ar	rce Review: e found under WAQSI	Not Affected R Chapter 6, Sec	tion 13.				

Emissions Information- The following tables request information needed to determine the applicable

requirements and the compliance status of this emission $\underline{\text{unit with those requirements.}}$

				iency Standards	7		
		Pre-Controlled Potential Emissions (tons/yr)	to Emit (PTE)	Units	to Emit (lbs/hr)	to Emit (tons/yr)	Basis for Determination
eria Po	llutants:						
1.)	Particulate emissions (PE/PM) (formerly particulate matter, PM)						
2.)	PM #10 microns in diameter (PE/PM10)						
3.)	PM #2.5 microns in diameter (PE/PM2.5)						
	Sulfur dioxide (SO2)						
5.)	Nitrogen Oxides (NOx)						
6.)	Carbon monoxide (CO)						
7.)	Volatile organic compounds (VOC)				0.83	3.64	Other
8.)	Lead (Pb)						
9.)	Total Hazardous Air Pollutants (HAPs)				0.07	0.30	Other
	Fluoride (F)						
11.)	Hydrogen Sulfide (H2S)						
12.)	Mercury (Hg)						
13.)	Total Reduced Sulfur (TRS)						
14.)	Sulfuric Acid Mist (SAM)						

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

8.)

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants

		Efficie	ency Standards			
	Pre-Controlled	Potential		Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:					•	
1.) NA						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						
8.)						
		Efficie	ency Standards	\neg		
	Pre-Controlled	Potential	iney standards	Potential	Potential	
	Potential Emissions	to Emit		to Emit	to Emit	Basis for
	(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:	Victorial Int	,		1	,	- communication
1.) NA						
2.)						
3.)						
4.)						
5.)						
6.)						
7.)						

Loading/Unloading/Dump

Company Equipment ID:	d Truck Loa	ding			
Company Equipment Description	:	Loading			
Operating Status: Operating					
Initial Construction Commencem			Oct 2014 - Feb	2015	
Initial Operation Commencement			Mar-15		
Most Recent Construction/ Modi					
Commencement Date:		NA			
		7.7			_
Most Recent Operation Commen		NA			
Select reason(s) for this emission	ns unit being in	cluded in th	is application (m	ust be complete	d regardless of date of
installation or modification):					
Reason: Construct	ion (Greenfield	/New Facilit	y)		
If reason is <i>Reconstruction</i> or <i>Te</i>	mporary Permi	it or Other,	please explain be	elow:	
Type of Material: Liquid					
Material Description:	Crude Oil and	l Produced V	Vater		
Maximum Annual Throughput:	95300			Units:	barrels/yr
Maximum Hourly Throughput:	85			Units:	barrels/hr
Detailed Description of Loading/U		p Source:			
Crude Oil and Produced water fro	om oil well				
		(
SCC Codes: List all Source Classifi	cation Code(s)	(SCC) that de	escribe the proces	ss(es) performed	by the emission source
(e.g., 1-02-002-04).					
		231001	.0800		
Potential Operating Schedule:		perating sch	edule for this em	ission unit.	
Hours/day:	4				
Hours/year:	1460				

Control Eq If yes, plea			opriate Control L	Device and Release P	oint Informatio	n worksheets.
Best Availa	ble Control Te	chnology (BACT): Was a BACT A	nalysis completed fo	r this emission u	ınit?
	Yes		No	·		
Pollutant:		_				
Proposed E	BACT:					
*If yes, atta	ach BACT Analy	sis with this app	olication.			
Lowest Acl	nievable Emiss	on Rate (LAER)	: Was a LAER An	alysis completed for	this emission un	it?
	Yes		No	7		
Pollutant:		_				
Proposed L	AER:					
*If yes, atta	ach LAER Analy	sis with this app	lication.			
	New Source Pe	Standards (NSP erformance Stan	S): ndard are listed u New Stationary S			
National Er	nission Standaı	ds for Hazardou	us Air Pollutants (NESHAP Part 61):		Not Affected
		asbestos, benz		ir Pollutants (NESHA nercury, and vinyl chl		sted under 40 CFR 61.
National Er	nission Standaı	ds for Hazardoเ	us Air Pollutants (NESHAP Part 63):		Not Affected
		listed under 40 (Pollutants (NESHAF	Part 63)	
Prevention		Deterioration (PS oe found under V	SD): VAQSR Chapter	Not Affected 6, Section 4.]
Non-Attain	ment New Sou These rules ar		Not Affe			

Emissions Information- The following tables request information needed to determine the applicable requirements and the compliance status of this emission unit with those requirements.

Efficiency Standards Pre-Controlled Potential otential Potential Emissions to Emit to Emit to Emit Basis for (PTE) (tons/yr) (lbs/hr) (tons/yr) Determination Units Criteria Pollutants: 1.) Particulate emissions (PE/PM) (formerly particulate matter, PM) 2.) PM #10 microns in diameter (PE/PM10) 3.) PM #2.5 microns in diameter (PE/PM2.5) 4.) Sulfur dioxide (SO2) 5.) Nitrogen Oxides (NOx) 6.) Carbon monoxide (CO) 7.) Volatile organic 1.366** 3.37 2.46 AP-42 compounds (VOC) 8.) Lead (Pb) 9.) Total Hazardous Air 0.28 0.20 AP-42 Pollutants (HAPs) 10.) Fluoride (F) 11.) Hydrogen Sulfide (H2S) 12.) Mercury (Hg) 13.) Total Reduced Sulfur (TRS) 14.) Sulfuric Acid Mist (SAM)

^{*}Provide your calculations as an attachment and explain how all process variables and emissions factors were selected.

^{**} lb/1000 gallons, uncontrolled PTE based on operating 8760 hours

Hazardous Air Pollutants (HAPs) and Toxic Air Contaminants

		-	Effici	ency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:							•
1.)	NA						
2.)							
3.)							
4.)							
5.)							
6.)							
7.)							
8.)							

Greenhouse Gases (GHGs)

			- 10				
			Effic	ciency Standards			
		Pre-Controlled	Potential		Potential	Potential	
		Potential Emissions	to Emit		to Emit	to Emit	Basis for
		(tons/yr)	(PTE)	Units	(lbs/hr)	(tons/yr)	Determination
Pollutants:							
1.)	NA						
2.)							
3.)							
4.)							
5.)							
6.)							
7.)							
8.)							

Release Point Information:

Complete the table below for *each* release point. Please include release point information for each emission unit. Multiple attachments may be necessary. A release point is a point at which emissions from an emission unit are released into the ambient (outside)air. List each individual release point on a separate pair of lines (release point ID and description). For longitude and latitude, use NAD 83/WGS84 datum and 5 digits after the decimal (i.e. 41.12345, -107.56789)

Stac	k Release Point Inform	ation	
Company Release Point ID:	Release Point Type:	Vertical	
Controlled Tank & Emergency gas Emissions	Release Point Latitude	2:	43.360414
	Release Point Longitue	de:	-105.789419
Company Release Point Description:	Base Elevation (ft):	5198	
Tank vapor and Associated gas combustor	Stack Height (ft):	20	
emissions	Stack Diameter (ft):	0.25	
	Exit Gas Velocity (ft/s)	:	300
	Exit Gas Temp (F):	900	
	Exit Gas Flow Rate (ac	fm):	1178
Company Release Point ID:	Release Point Type:	Vertical	
Heater Treater heater	Release Point Latitude	2:	43.360414
	Release Point Longitue	de:	-105.789419
Company Release Point Description:	Base Elevation (ft):	5198	
	Stack Height (ft):	20	
	Stack Diameter (ft):	1	
	Exit Gas Velocity (ft/s)	:	7.2
	Exit Gas Temp (F):	575	
	Exit Gas Flow Rate (ac	fm):	340
Company Release Point ID:	Release Point Type:		
	Release Point Latitude		
	Release Point Longitu	de:	
Company Release Point Description:	Base Elevation (ft):		
	Stack Height (ft):	-	
	Stack Diameter (ft):		
	Exit Gas Velocity (ft/s)):	
	Exit Gas Temp (F):		
	Exit Gas Flow Rate (ac	fm):	_
Company Release Point ID:	Release Point Type:		
	Release Point Latitude	5/(5)	
	Release Point Longitu	de:	
Company Release Point Description:	Base Elevation (ft):		
	Stack Height (ft):	-	
	Stack Diameter (ft):		
	Exit Gas Velocity (ft/s)):	
	Exit Gas Temp (F):		
	Exit Gas Flow Rate (ac	:tm):	

Complete the table below for each fugitive (area, volume, line) release point. List each individual release point on a separate line.

Fugiti	ve Release Point Information	
Company Release Point ID:	Release Point Latitude:	43.360414
Fugs	Release Point Longitude:	-105.789419
	Release Height (ft): between	1 and 30
Company Release Point Description:	-	
Fugitives, which by definition do not have a		
point, volume or line		
Company Release Point ID:	Release Point Latitude:	
	Release Point Longitude:	
	Release Height (ft):	
Company Release Point Description:		-
Company Release Point ID:	Release Point Latitude:	
	Release Point Longitude:	
	Release Height (ft):	
Company Release Point Description:		
Company Release Point ID:	Release Point Latitude:	
	Release Point Longitude:	
	Release Height (ft):	
Company Release Point Description:		

SM ENERGY Spearhead Federal 14-7H COMBUSTION EMISSIONS

Compound	Emission Factor (lb/10 ⁶ ft ³)	Emission Factor (lb/MMBtu)	Treaters - 0.75 MMBtu/hr PTE (TPY)	Emission Factor Source
CO	84	0.082352941	0.271	AP-42 Table 1.4-1
NO _x	100	0.098039216	0.322	AP-42 Table 1.4-1
SO ₂	0.6	0.000588235	0.002	AP-42 Table 1.4-2
VOC	5.5	0.005392157	0.018	AP-42 Table 1.4-2
Total HAPs			0.006	
2-Methylnaphthalene	2.4E-05	2.4E-08	7.7E-08	AP-42 Table 1.4-3
3-Methylchloranthrene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.6E-08	5.2E-08	AP-42 Table 1.4-3
Acenaphthene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Acenaphthlyene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Anthracene	2.4E-06	2.4E-09	7.7E-09	AP-42 Table 1.4-3
Benz(a)anthracene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Benzene	2.1E-03	2.1E-06	6.8E-06	AP-42 Table 1.4-3
Benzo(a)pyrene	1.2E-06	1.2E-09	3.9E-09	AP-42 Table 1.4-3
Benzo(b)fluoranthene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Benzo(g,h,i)perylene	1.2E-06	1.2E-09	3.9E-09	AP-42 Table 1.4-3
Benzo(k)fluoranthene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Chrysene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Dibenzo(a,h)anthracene	1.2E-06	1.2E-09	3.9E-09	AP-42 Table 1.4-3
Dichlorobenzene	1.2E-03	1.2E-06	3.9E-06	AP-42 Table 1.4-3
Fluoranthene	3.0E-06	2.9E-09	9.7E-09	AP-42 Table 1.4-3
Fluorene	2.8E-06	2.7E-09	9.0E-09	AP-42 Table 1.4-3
Formaldehyde	7.5E-02	7.4E-05	2.4E-04	AP-42 Table 1.4-3
Hexane	1.8E+00	1.8E-03	5.8E-03	AP-42 Table 1.4-3
Indeno(1,2,3-cd)pyrene	1.8E-06	1.8E-09	5.8E-09	AP-42 Table 1.4-3
Naphthalene	6.1E-04	6.0E-07	2.0E-06	AP-42 Table 1.4-3
Phenanthrene	1.7E-05	1.7E-08	5.5E-08	AP-42 Table 1.4-3
Pyrene	5.0E-06	4.9E-09	1.6E-08	AP-42 Table 1.4-3
Toluene	3.4E-03	3.3E-06	1.1E-05	AP-42 Table 1.4-3
Arsenic	2.0E-04	2.0E-07	6.4E-07	AP-42 Table 1.4-4
Beryllium	1.2E-05	1.2E-08	3.9E-08	AP-42 Table 1.4-4
Cadmium	1.1E-03	1.1E-06	3.5E-06	AP-42 Table 1.4-4
Chromium	1.4E-03	1.4E-06	4.5E-06	AP-42 Table 1.4-4
Cobalt	8.4E-05	8.2E-08	2.7E-07	AP-42 Table 1.4-4
Manganese	3.8E-04	3.7E-07	1.2E-06	AP-42 Table 1.4-4
Mercury	2.6E-04	2.5E-07	8.4E-07	AP-42 Table 1.4-4
Nickel	2.1E-03	2.1E-06	6.8E-06	AP-42 Table 1.4-4
Selenium	2.4E-05	2.4E-08	7.7E-08	AP-42 Table 1.4-4

SM ENERGY Spearhead Federal 14-7H FUGITIVE EMISSIONS

		0	Component Source Counts	ounts	
Equipment Type Storage Tank	Storage Tank	Wellhead	Separator	Heater-treater	Header
Number of units	8	1	1	1	1
Valves	6	5	6	8	5
Flanges	4	10	12	12	10
Connectors	20	4	10	20	4
Open-ended lines	2	0	0	0	0
Other components	2	1	0	0	0

				Emissions		
Total Component Coun	ent Count	Hydrocarbon EF (lb/component-day)	ТРҮ НС	HC VOC Wt. Fraction	TPY VOCs	
Valves	72	0.13	1.71	1		1.71
Flanges	76	0.0058	0.08	1		0.08
Connectors	198	0.011	0.40	1		0.40
Open-ended lines	16	0.074	0.22	1		0.22
Other components	17	0.4	1.24	1		1.24
Total	379		3.64			3.64

Total HCs =	3.64 TPY
Total VOC's =	3.64 TPY
Total VOC's =	0.83 lb/hr
Total HAPs =	0.30 TPY
Total HAPs =	0.07 lb/hr

- Component counts were derived from Table W-1C of Subpart W (Oil and Natural Gas Systems) of 40 CFR Part 98 for Western U.S. oil production equipment for wellheads and heater treater. Tank components are based on engineering estimates.
- Emission Factors (in lb/component-day) from Wyoming Air Quality Division Oil and Gas Permitting Guidance, 2007
- Light Oil VOC Weight fraction assumed to be 1.0 to be conservative
- To be conservative, all Speciated Fugitive Emission Factors (Wt Fractions) from light crude Wyoming Air Quality Division Oil and Gas Permitting Guidance, 2007 (HAP Fraction of Hydrocarbon Emissions 0.2585)
- Total HAPs calculated by multiplying Total HCs in TPY by weight fraction HAPs

SM ENERGY Spearhead Federal 14-7H LOADING EMISSIONS

Truck Loading Emission Methodology

$$L_L$$
 = 12.46 x $\frac{SPM}{T}$

Where:

 $L_L = loading loss (lb/1,000 gallon liquid loaded)$

S = saturation factor (AP-42 Table 5.2-1)

P = true vapor pressure of liquid loaded (psia), (from AP-42 Table 7.1-2)

M = molecular weight of vapor (Table 7.1-2) T = Temperature of liquid loaded (${}^{\circ}R = 460 + {}^{\circ}F$)

Variables		Source
S	0.6	AP-42 Table 5.2-1 (Submerged loading: dedicated normal service)
P (psia)	1.9	AP-42 Table 7.1-2 (Crude Oil RVP 5 at 40F)
M (lb/lbmole)	50	AP-42 Table 7.1-2 (Crude Oil RVP 5)
T (°R)	520	Annual average temperature (60°F)
L _L (lb/1,000 gal)	1.366	
		Total production from well (including a decline factor of 40% to account for the decrease in
Loading (bbl/day)	235	production during the first year)
Loading (bbl/yr)	85,775	
HAP Fraction (wt.)	0.08	Low Pressure Oil Sample

		Truck Load	ling	Emission Esti	mates			
VOC (TPY)	=	Annual Production (bbl) yr	Х	42 (gal) bbl	x -	1000	· × –	L _L (lb) 1,000 gallon
			Х	1 (ton) 2,000 (lb)	=	2.46		Ton VOC/yr
VOC (lb/hr)	=	VOC (ton) yr	х	2,000 (lb) 1 (ton)	х -	1 yr 1,460 hrs		
					=	3.37		lb VOC/hr
НАР (ТРҮ)	Ξ	VOC (ton) yr	x	HAP Fraction	=	0.20		Ton HAP/yr
HAP (lb/hr)	=	VOC (lb)	х	HAP Fraction	=	0.28		lb HAP/hr

SM ENERGY Spearhead Federal 14-7H CONTROLLED TANK EMISSIONS

CO and NOx Emissions From Combustion of Tank Vapors

Compound	Emission Factor (lb/MMBtu)	Throughput MMBtu/yr	Controlled Emissions (TPY)	Emission Factor Source
CO	0.37	17,985	3.327	AP-42 Table 13.5-1
NO _x	0.14	17,985	1.259	AP-42 Table 13.5-1

HC Vapor emissions (MSCFD) = 18.5100 Gas Heat Content (Btu/SCF) = 2,661.99 Annual heat throughput (Btu/yr) = 17,984,803,739

^{*} Both the throughput and heat content are from the E&P TANKS results - attached.

VOC and HAPs Emissions From Combustion of Tank Vapors				
Compound	Throughput (TPY)	Burner Control Efficiency (%)	Controlled Emissions (TPY)	Emission Factor Source
VOC	372.18	98	7.444	WY Oil and Gas Guidance -2010
HAPs	7.72	98	0.154	WY Oil and Gas Guidance -2010

Emissions are based on 98% control efficiency.

Production values put in E&P TANKS is incorporating a decline curve of 0.6 to account for the decrease in production during the first year

SM ENERGY CO
SITE SECURITY DIAGRAM:
WELL NO: SPEARHEAD FED 14-7H
FIELD NAME: SPEARHEAD RANCH
LOCATION: NWSW Sec. 7, T39N, R74W
COUNTY: Carbon County, WY
BLM # WYW126951

100 BBI

0∷

SITE FACILITY PLAN LOCATED AT: SM ENERGY CO 550 N 31^{5T} ST, SUITE 500 BILLINGS, MT 59103

NOT TO SCALE

C=RECYCLING S=SALES E=PRODUCTION SEALING DETAIL =EQUALIZER VALVE O/C - OPEN OR SEALED C - CLOSED, SC - SEALED CLOSED, WHERE: O - OPEN, SO - SEALED OPEN, OR NORMAL OPERATIONS PRODUCTION 0/c 0 0/0 RECYCLING 0/0 0/0 0 SALES 35 SC

RP 0 8 0 FLARE 0 400 BB 400 BB 400 bb 400 BB Access

RG 1/23/15

Spearhead Fed EP Tank Results.txt

```
**********************
    Project Setup Information
*****
Project File
                   : Untitled.Ept
Flowsheet Selection
                   : Oil Tank with Separator
Calculation Method
                   : RVP Distillation
Control Efficiency : 98.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                    : SM PRB Spearhead Fed
Well Name
                    : Spearhead Fed 14-7
                    : 2015.05.01
Date
****************
*****
    Data Input
Separator Pressure
                   : 30.00[psig]
Separator Temperature
                    : 80.00[F]
Ambient Pressure
                   : 14.70[psia]
                   : 70.00[F]
Ambient Temperature
C10+ SG
                   : 0.7475
C10+ MW
                   : 163.188
-- Low Pressure Oil
  No.
       Component
                         mo1 %
                         0.0000
  1
       H2S
  2
       02
                         0.0000
  3
       CO2
                         0.0504
  4
       N2
                         0.0000
  5
       C1
                         0.3732
  6
       C2
                         1.1800
  7
                         5.2001
       C3
  8
       i-C4
                         1.5265
  9
       n-C4
                         5.6463
  10
       i-C5
                         3.7008
                        4.7571
  11
       n-c5
  12
       C6
                         4.5526
  13
       C7
                        17.5306
  14
       C8
                        8.8237
  15
       C9
                         8.0407
       C10+
  16
                        28.9610
  17
       Benzene
                         0.3527
  18
       Toluene
                         1.5732
  19
       E-Benzene
                         0.3364
  20
       Xylenes
                         2.1105
  21
                         4.3537
  22
       224Trimethylp
                         0.9211
-- Sales Oil
Production Rate : 235[bb]/day]
```

Days of Annual Operation : 365 [days/year]

Page 1

Spearhead Fed EP Tank Results.txt : 39.7 : 8.00[psia]

API Gravity Reid Vapor Pressure

* Calculation	Results			
******* *****	*********	* * * * * * * * * * * * * * * * * * * *	t the the the the the the the the the th	******
Emission Summar	у			
Item	Uncontrolled [ton/yr] 7.720	Uncontrolled [lb/hr]	Controlled [ton/yr]	Controlled [lb/hr]
Total HAPs Page 1	7.720 	1.763 	0.154 	0.035 E&P TANK
Total HC VOCs, C2+ VOCs, C3+	418.129 411.474 372.176	95.463 93.944 84.972	8.363 8.229 7.444	1.909 1.879 1.699
Uncontrolled Recov	ery Info.			
Vapor HC Vapor GOR	18.5100 18.4000 78.77	[MSCFD] [MSCFD] [SCF/bbl]		
Emission Compos	ition			
No Component 1 H2S 2 O2 3 CO2 4 N2 5 C1 6 C2 7 C3 8 i-C4 9 n-C4 10 i-C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Toluene 19 E-Benzene 20 Xylenes 21 n-C6 22 224Trimethylp Total	[ton/yr] 0.000 0.000 2.465 0.000 6.655 39.299 195.526 29.482 74.122 22.199 21.083 7.637 11.262	Uncontrolled [1b/hr] 0.000 0.000 0.563 0.000 1.519 8.972 44.641 6.731 16.923 5.068 4.813 1.744 2.571 0.466 0.169 0.083 0.093 0.137 0.011 0.061 1.335 0.125 96.026	Controlled [ton/yr] 0.000 0.000 2.465 0.000 0.133 0.786 3.911 0.590 1.482 0.444 0.422 0.153 0.225 0.041 0.015 0.007 0.008 0.012 0.001 0.005 0.117 0.011 8.412	
Stream Data				
No. Component Total Emissions	MW	LP Oil Fla:	sh Oil Sale Oil % mol%	Flash Gas W&S Gas mol % mol %
mol % 1 H2S	34.80	0.0000 0.00 Page 2		0.0000 0.0000

0.0000	Spearhead	d Fed EP Ta	ank Results	s.txt		
0.0000 2	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
3 CO2 0.6283	44.01	0.0504	0.0207	0.0000	1.2709	0.3581
4 N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 5 C1	16.04	0.3732	0.0730	0.0000	12.7188	1.2619
4.6530 6 C2	30.07	1.1800	0.6932	0.0046	21.2005	11.9094
14.6594 7 C3	44.10	5.2001	4.4071	1.3167	37.8297	54.7414
49.7358 8 i-C4	58.12	1.5265	1.4479	1.1636	4.7638	6.0788
5.6896 9 n-C4	58.12	5.6463	5.4779	4.8918	12.5911	15.0244
14.3042 10 i-C5	72.15	3.7008	3.7129	3.7229	3.2160	3.5500
3.4512 11 n-C5	72.15	4.7571	4.7987	4.8866	3.0650	3.3671
3.2777 12 C6	86.16	4.5526	4.6406	4.8612	0.9540	1.0475
1.0198 13 C7	100.20	17.5306	17.9293	18.9476	1.2080	1.3419
1.3023 14 C8	114.23	8.8237	9.0345	9.5761	0.1891	0.2135
0.2063 15 C9	128.28	8.0407	8.2356	8.7368	0.0587	0.0714
0.0676 16 C10+	163.19	28.9610	29.6676	31.4875	0.0218	0.0263
0.0249 17 Benzene	78.11	0.3527	0.3600	0.3784	0.0547	0.0603
0.0587 18 Toluene 0.0732	92.13	1.5732	1.6100	1.7042	0.0675	0.0756
19 E-Benzene 0.0051	106.17	0.3364	0.3445	0.3653	0.0047	0.0053
20 Xylenes 0.0280	106.17	2.1105	2.1614	2.2923	0.0255	0.0291
21 n-C6 0.7609	86.18	4.3537	4.4427	4.6675	0.7101	0.7823
22 224Trimethylp 0.0539	114.24	0.9211	0.9424	0.9968	0.0500	0.0555
0.0339						
MW 47.18		109.86	111.48	115.32	43.37	48.78
Stream Mole Ratio		1.0000	0.9763	0.9198	0.0237	0.0565
Heating Value 2661.99	[BTU/SCF]				2442.23	2754.38
Gas Gravity 1.63	[Gas/Air]				1.50	1.68
Bubble Pt. @ 100F	[psia]	35.32	21.66	8.92		
RVP @ 100F	[psia]	19.80	15.37	8.00		
Page 2					Е8	&P TANK
Spec. Gravity @ 100F	:	0.675	0.676	0.680		

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901 (307) 352-7292

LIMS ID: Analysis Date/Time: Analyst Initials: Sample Temperature: Sample Pressure: Date Sampled: Component	N/A 4/7/2015 PRP 80 30 4/1/2015	8:07 AM	Description: Field: ML#: GC Method: Data File:	Spearhead 14-7 Spearhead Rch SM Energy Quesliql GPA 2186 QPC32.D
Analyst Initials: Sample Temperature: Sample Pressure: Date Sampled:	PRP 80 30	O.U/ AIVI	ML#: GC Method:	SM Energy Quesliql GPA 2186
Sample Temperature: Sample Pressure: Date Sampled:	80 30		GC Method:	Quesliql GPA 2186
Sample Pressure: Date Sampled:	30			
Date Sampled:			Data File.	
• 00,000	4/1/2015		Instrument ID:	
Component			mstrument ib.	1
	Mol%	i.	Wt%	LV%
Methane	0.3732		0.0543	0.1289
Ethane	1.1800		0.3220	
Propane	5.2001		2.0809	
sobutane	1.5265		0.8052	1.0184
n-Butane	5.6463		2.9782	3.6290
Neopentane	0.1402		0.0918	0.1096
sopentane	3.5606		2.3313	2.6547
n-Pentane	4.7571		3.1147	3.5155
2,2-Dimethylbutane	0.0534		0.0417	0.0454
2,3-Dimethylbutane	0.7201		0.5631	0.6017
2-Methylpentane	2.4144		1.8881	2.0431
3-Methylpentane	1.3647		1.0672	1.1355
n-Hexane	4.3637		3.4126	3.6584
Heptanes	17.8833		15.7416	15.3257
Octanes	11.3180		11.3859	11.0154
Nonanes	10.4876		11.7160	11.1593
Decanes plus	28.9610		42.3847	40.3770
Nitrogen	0.0000		0.0000	0.0000
Carbon Dioxide	0.0504		0.0201	
Total	100.0000		100.0000	100.0000
Global Properties		Units		

Avg Molecular Weight Pseudocritical Pressure Pseudocritical Temperature Specific Gravity Liquid Density Liquid Density Specific Gravity SCF/bbl SCF/gal MCF/gal gal/MCF Net Heating Value Net Heating Value Gross Heating Value Gross Heating Value API Gravity MON	110.1917 gm/mole 414.06 psia 529.52 degF 0.71192 gm/ml 5.9352 lb/gal 249.28 lb/bbl 2.7816 air=1 860.94 SCF/bbl 20.4986 SCF/gal 0.0205 MCF/gal 48.809 gal/MCF 5495.1 BTU/SCF at 60°F 18976.9 BTU/lb at 60°F 5582.4 BTU/SCF at 60°F 20439.4 BTU/lb at 60°F 122388.6 BTU/gal at 60°F
Constitution of the Consti	9
MON	50.9
RON	52.2
RVP	45.136 psia

Component	Mol%	Wt%	LV%
Benzene	0.3527	0.2500	0.2012
Toluene	1.5732	1.3155	1.0740
Ethylbenzene	0.3364	0.3241	0.2646
M&P Xylene	1.6375	1.5777	1.2927
O-Xylene	0.4730	0.4557	0.3667
2,2,4-Trimethylpentane	0.9211	0.9548	0.9438

Data File:

Spearhead 14- HAPS

8.2904 Page #2

GRI E&P TANK INFORMATION	N		
Component	Mol%	Wt%	LV%
H2S	0.0000	0.0000	0.0000
O2	0.0000	0.0000	0.0000
CO2	0.0504	0.0201	0.0175
N2	0.0000	0.0000	0.0000
C1	0.3732	0.0543	0.1289
C2	1.1800	0.3220	0.6434
C3	5.2001	2.0809	2.9206
IC4	1.5265	0.8052	1.0184
NC4	5.6463	2.9782	3.6290
IC5	3.7008	2.4231	2.7643
NC5	4.7571	3.1147	3.5155
Hexanes	4.5526	3.5601	3.8257
Heptanes	17.5306	15.4916	15.1245
Octanes	8.8237	9.1156	8.9976
Nonanes	8.0407	9.3585	9.2353
Benzene	0.3527	0.2500	0.2012
Toluene	1.5732	1.3155	1.0740
E-Benzene	0.3364	0.3241	0.2646
Xylene	2.1105	2.0334	1.6594
n-C6	4.3637	3.4126	3.6584
2,2,4-Trimethylpentane	0.9211	0.9548	0.9438
C10 Plus			
C10 Mole %	28.9610	42.3847	40.3770
Molecular Wt.	163.1878		
Specific Gravity	0.7475		
Total	100.00	100.00	100.00